Jumat, 04 Juli 2014

NEGASI , IMPLIKASI , TAUTOLOGI , KONTRADIKSI



Negasi , Implikasi , Tautologi , Kontradiksi
Negasi
Tentukan negasi dari pernyataan-pernyataan berikut:
a) Hari ini Jakarta banjir.
b) Kambing bisa terbang.
c) Didi anak bodoh
d) Siswa-siswi SMANSA memakai baju batik pada hari Rabu.
Pembahasan
a) Tidak benar bahwa hari ini Jakarta banjir.
b) Tidak benar bahwa kambing bisa terbang.
c) Tidak benar bahwa Didi anak bodoh
d) Tidak benar bahwa siswa-siswi SMANSA memakai baju batik pada hari Rabu.
Implikasi
Implikasi adalah operasi logika “ jika … maka…”, symbol : => , Suatu pernyataan majemuk yang dihubungkan dengan “jika..maka…” akan bernilai salah , jika pernyataan pertama bernilai benar dan pernyataan kedua bernilai salah. Sedang lainnya bernilai benar.
Contoh:
Diberikan pernyataan:
p : Tahun ini kemarau panjang.
q : Tahun ini hasil padi meningkat.
Nyatakan dengan kata-kata:
a) p → q
b) ~p → ~q
c) p → ~q

Pembahasan:
Implikasi, formatnya adalah "jika p maka q" sehingga:
a) p → q : Jika tahun ini kemarau panjang maka hasil padi meningkat
b) ~p → ~q : Jika tahun ini tidak kemarau panjang maka hasil padi tidak meningkat.
c) p → ~q : Jika tahun ini kemarau panjang maka hasil padi tidak meningkat.
Tautologi
Tautologi adalah pernyataan majemuk yang selalu benar untuk semua kemungkinan nilai kebenaran dari pernyataan-pernyataan komponennya. Sebuah Tautologi yang memuat pernyataan Implikasi disebut Implikasi Logis. Untuk membuktikan apakah suatu pernyataan Tautologi, maka ada dua cara yang digunakan. Cara pertama dengan menggunakan tabel kebenaran, yaitu jika semua pilihan bernilai B (benar) maka disebut Tautologi, dan cara kedua yaitu dengan melakukan penjabaran atau penurunan dengan menerapkan sebagian dari 12 hukum-hukum Ekuivalensi Logika.
Contoh:
Lihat pada argumen berikut:
Jika Tono pergi kuliah, maka Tini juga pergi kuliah. Jika Siska tidur, maka Tini pergi kuliah.  Dengan demikian, jika Tono pergi kuliah atau Siska tidur, maka Tini pergi kulah.
Diubah ke variabel proposional:
A  Tono pergi kuliah
B  Tini pergi kuliah
C  Siska tidur
Diubah lagi menjadi ekspresi logika yang terdiri dari premis-premis dan kesimpilan. Ekspresi   logika 1 dan 2 adalah premis-premis, sedangkan ekspresi logika 3 adalah kesimpulan.
(1)   A → B                                   (Premis)
(2)   C → B                                   (premis)
(3) (A V C) → B                           (kesimpulan)
Maka sekarang dapat ditulis: ((A → B) ʌ (C → B)) → ((A V C) → B
A
B
C
A → B
C → B
(A → B) ʌ (C → B)
A V C
(A V C) → B

B
B
B
B
S
S
S
S
B
B
S
S
B
B
S
S
B
S
B
S
B
S
B
S
B
B
S
S
B
B
B
B
B
B
S
B
B
B
S
B
B
B
S
S
B
B
S
B
B
B
B
B
B
S
B
S
B
B
S
S
B
B
S
B
B
B
B
B
B
B
BB
B

Ini adalah tabel kebenaran yang menunjukkan Tautologi dengan alasan yaitu semua pernyataannya bersifat benar atau True (T). maka dengan perkataan lain pernyataan majemuk (p ʌ ~q)  p selalu benar.

Kontradiksi
Kontradiksi adalah kebalikan dari tautologi yaitu suatu bentuk pernyataan yang hanya mempunyai contoh substansi yang salah, atau sebuah pernyataan majemuk yang salah dalam segala hal tanpa memandang nilai kebenaran dari komponen-komponennya. Untuk membuktikan apakah suatu pernyataan tersebut kontradiksi, maka ada dua cara yang digunakan. Cara pertama dengan menggunakan tabel kebenaran, yaitu jika semua pilihan bernilai F  atau salah maka disebut kontradiksi, dan cara kedua yaitu dengan melakukan penjabaran atau penurunan dengan menerapkan sebagian dari 12 hukum-hukum Ekuivalensi Logika.

Contoh dari Kontradiksi:
1.      (A ʌ ~A)
Pembahasan:


A
~A
(A ʌ ~A)
B
S
S
B
S
S


Dari tabel kebenaran diatas dapatlah disimpulkan bahwa pernyataan majemuk (A ʌ ~A) selalu salah.
2.      P ʌ (~p ʌ q)
Pembahasan:


p
q
~p
(~p ʌ q)
P ʌ (~p ʌ q)
B
B
S
S
B
S
B
S
S
S
B
B
S
S
B
S
S
S
S
S



Ini adalah tabel kebenaran yang menunjukkan kontradiksi dengan alasan yaitu semua pernyataan bernilai salah (F).

Daftar Pustaka :
Dogleg.jw.lt/bimbel/sma/mtk/soal/logika
http://elimciamistasik.wordpress.com/logika-matematika/


Tidak ada komentar:

Posting Komentar